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Abstract

We develop a model of informal risk-sharing in social networks, in which rela-
tionships between individuals can be used as social collateral to enforce insurance
payments. We characterize incentive compatible risk-sharing arrangements and
obtain two results. (1) The degree of informal insurance is governed by the ex-
pansiveness of the network, measured by the number of connections that groups
of agents have with the rest of the community, relative to group size. Two-
dimensional networks, where people have connections in multiple directions, are
su¢ ciently expansive to allow very good risk-sharing. We show that social net-
works in Peruvian villages satisfy this dimensionality property; thus, our model
can explain Townsend�s (1994) puzzling observation that village communities
often exhibit close to full insurance. (2) In second-best arrangements, agents
organize in endogenous "risk-sharing islands" in the network, where shocks are
shared fully within, but imperfectly across islands. As a result, network based
risk-sharing is local: socially closer agents insure each other more. We also discuss
how our results extend to an environment in which social collateral is endogenous.
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In much of the developing world, people face severe income �uctuations due to weather

shocks, diseases a¤ecting crops and livestock, and other factors. These �uctuations are

costly because households are poor and lack access to formal insurance markets. Informal

risk-sharing arrangements, which help cope with this risk through transfers and gifts, are

therefore widespread. For example, Figure 1 depicts �nancial and in-kind transfers between

relatives and friends in a rural village in the Huaraz province of Peru.1

Development economists have studied both the pattern of informal transfers and their

e¤ectiveness in sharing risk. Two seemingly contradictory �ndings have been documented.

On the one hand, these arrangements often seem to be based on local obligations, as people

mainly help out close neighbors, relatives and friends (Udry 1994). On the other hand,

these local mechanisms often achieve almost full global insurance on the village level. For

example, Townsend (1994) argues that the full insurance model provides a surprisingly good

benchmark even though it is typically rejected in the data.2

How do local obligations and transfers aggregate up to good global risk-sharing? To

shed light on this question, in Section 1 we build a simple model of risk-sharing in social

networks. In our model, full insurance is di¢ cult to obtain because it requires a high level

of connectedness that we do not observe in real social network data. However, consistent

with the evidence, we also show that close to perfect risk-sharing can be achieved for the

type of more loosely connected social networks that we do observe. Our model also allows

us to study the nature of informal risk-sharing arrangements. We show that households�

consumption will comove more strongly with that of socially closer households, a prediction

consistent with the empirical �ndings in Angelucci, Giorgi and Rasul (2012), who therefore

provide indirect evidence for our model.

We model the social network as a set of pre-existing relationships, such as friendships and

family ties. These links have utility values, which represent either the direct consumption

value of relationships, or indirect bene�ts from future transactions. We de�ne a risk-sharing

arrangement as a set of transfers between direct neighbors in the social network in every
1The data used in constructing this Figure were collected by Karlan, Mobius and Rosenblat (2007). See

Appendix B for details.
2Also see Ogaki and Zhang (2001) and Mazzocco (2007).
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Figure 1: Financial and real transactions between relatives and friends in a rural community
in Peru, represented as lines between transacting parties in the village map. Thickness of
line measures value of transaction in Peruvian New Soles.

state of the world. This arrangement is subject to moral hazard: ex post, an agent who

is expected to make a transfer to a network neighbor may prefer to deviate and withhold

payment. In our model, such deviations result in the loss of the a¤ected link. Intuitively,

network links serve as social collateral ensuring that agents live up to their obligations under

the informal risk-sharing arrangement.

In Section 2 we state our basic theoretical result, establishing an equivalence between

this simple model in which an individual deviation is punished by the loss of a link with the

cheated friend, and a more realistic model in which a group deviation is punished, through

ostracism, by the rest of the community. In this more realistic model with ostracism and

group deviations, a consumption allocation can be implemented if the net transfer from any

group of agents to the rest of the community does not exceed the sum of the values of all

links between the group and the community. Then, the intuition for the equivalence with

link-level punishments is that individual obligations embedded in the value of links build up
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to group obligations represented by the total value of links connecting the group with the

larger community.

The equivalence between individually rational arrangements with link-level enforcement

and coalition-proof arrangements with ostracism has two implications. First, it shows that

decentralized insurance arrangements with link-level enforcement can also be implemented

in a centralized fashion through intermediaries such as trusted village elders, who respect

the obligations of each group (e.g., extended family) in the community. Second, the result

relates the geometry of the network to its e¤ectiveness for risk-sharing, allowing us to study

how local links aggregate to social capital at the community level.

The key property of network structure identi�ed by our equivalence result is called ex-

pansiveness, and measures the number of connections that groups of agents have with the

rest of the community relative to group size. To gain intuition about this property, consider

the three example networks in Figure 2. Among these networks, the in�nite line in Figure

2A is the least expansive, because any connected set of agents always has only two links with

the rest of the community. The in�nite �plane�network of Figure 2B is more expansive,

while the in�nite binary tree of Figure 2C is the most expansive network of all, where the

number of outgoing links for any set grows at least proportionally with its size.

We show that full insurance requires highly expansive networks like the in�nite binary

tree. However, we do not �nd that real-world social networks in rural villages in Peru

exhibit this large degree of expansiveness. Instead, these social networks are more similar

to planar networks, possibly because people tend to have connections in multiple directions

at close geographic distance. We next show that a two-dimensional structure, such as the

one found in our Peruvian data, is su¢ cient to ensure very good risk-sharing in most states

of the world. For an intuition, consider a connected group of agents in the plane network.

With idiosyncratic shocks, the standard deviation of the total endowment of the group is

proportional to the square root of group size. But on the plane, the number of outgoing links

from the group is also at least proportional to the square root of size (the worst case would be

when the group has a square shape). Thus group obligations with the rest of the community

� links connecting the group with the network � are of the same order of magnitude as

group shocks. Since this holds for every group, it follows that �almost� full risk-sharing
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Figure 2: Expansion properties of three example networks. The parameter-area ratio c[F] is
de�ned as the number of links leaving the set F (perimenter) divded by the number of agents
inside the set (area). The perimeter-area ratio of a typical set in the network describes the
expansiveness of the geometry.
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can be implemented in the network. This argument applies not just for the regular plane

network, but for any social network which has a two-dimensional sub-structure. We call

these networks geographic networks and we show that our Peruvian village networks fall into

this class. As a result, our model provides a potential explanation for the informal insurance

puzzle highlighted by Townsend.

The above results constitute a quantitative analysis of informal risk-sharing. Section 3

presents our second main contribution, a qualitative analysis of constrained e¢ cient �second-

best�arrangements. We show that in these arrangements, for every realization of uncertainty

the network can be partitioned into endogenously organized connected groups called �risk-

sharing islands�. This partition has the property that shocks are completely shared within,

but only imperfectly across islands. The island structure can be understood in terms of �al-

most deviating coalitions,�that are indi¤erent between staying in the network and deviating
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as a group. Islands are maximal connected sets subject to the constraint that they are not

divided by any almost deviating coalition; therefore, insurance across island boundaries is

limited, but insurance within islands is complete. The size and location of these risk-pooling

islands is endogenously determined by the social structure and the realization of endow-

ment shocks, consistent with evidence documented by Attanasio, Barr, Cardenasy, Genicot

and Meghir (2009), and distinguishing our model from theories with exogenously speci�ed

risk-sharing groups.

A key implication of the islands result is that an agent�s consumption will comove more

with the consumption of closely connected neighbors. This follows because islands are con-

nected subgraphs: agents who are socially closer are more likely to belong to the same island

and thus provide more insurance. This observation helps characterize informal insurance as

a function of shock size. Risk-sharing works well for relatively small shocks: sharing islands

are large, and both direct and indirect friends help out. As the size of the shock increases,

only close friends help with the additional burden; and risk-sharing completely breaks down

for large shocks. Some of these predictions are con�rmed in the empirical work of Angelucci

et al. (2012).

In Section 4 we examine how our qualitative �ndings extend to a setting in which the net-

work structure is given, as before, but link capacities are determined endogenously through

costly socializing. A basic intuition we highlight is that the marginal value of extra social-

izing is related to the likelihood that an agent is at the boundary of a risk-sharing island,

because the it is only in such events that the agent�s transfer constraints are binding. This

logic implies that for low capacity levels� that is, when socializing is costly� the incen-

tives to socialize are increasing the likelihood of having islands with large boundaries, i.e.,

the expansiveness of the network, further strengthening the results obtained in our basic

model. At higher capacity levels� that is, when socialization is inexpensive� this relation-

ship is eventually reversed because the better insurance provided by expansive networks also

reduces the ben�ts of further insurance. We demonstrate with simulations the implication

of this logic that for costly socialization, equilibrium link capacities are higher in the (more

expansive) plane than on the line, amplifying our basic result that plane-like networks yield

signi�cantly better risk-sharing.
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In the concluding Section 5 we discuss some further research directions and caveats with

our model. Proofs are delegated to Appendix A and a supplementary appendix.

Our paper builds on a growing literature studying informal insurance in networks. Bloch,

Genicot and Ray (2008) develop a model with both informational and commitment con-

straints, and characterize network structures that are stable under certain exogenously spec-

i�ed risk-sharing arrangements. We conduct the opposite investigation: taking the network

as given, we study the degree and structure of informal risk-sharing. Bramoulle and Kran-

ton (2006) also study insurance arrangements in networks, but in their model there are no

enforcement constraints. Our modeling approach builds on Karlan, Mobius, Rosenblat and

Szeidl (2009), who explore informal borrowing in networks.3 Empirical work in this area

includes De Weerdt and Dercon (2006), Fafchamps and Lund (2003) and Fafchamps and

Gubert (2007), who use data on village networks, Attanasio et al. (2009) who document

the importance of social ties for risk-pooling, while Mazzocco (2007) emphasizes the role of

within-caste transfers.4

1 A model of risk-sharing in the network

1.1 Model setup

In our model, agents face income uncertainty due to factors such as weather shocks and crop

diseases. In the absence of a formal insurance market, agents can agree on an informal

risk-sharing agreement that speci�es transfers between pairs of agents in each state of the

world. These transfers are secured by the social network: connections in the network have

an associated consumption value that is lost if an agent fails to make a promised transfer.

Formally, a social network G = (W;L) consists of a set W of agents (vertices) and

3See also Ali and Miller (2008), who study network formation with repeated games and Dixit (2003), who
compares relational and formal governance in a circle network.

4More broadly, our work contributes to the growing literature on informal institutions. Kandori (1992),
Ellison (1994) and Greif (1993) develop game-theoretic models of community enforcement, and Kranton
(1996) studies the interaction between relational and formal markets. In the context of consumption in-
surance, Ligon (1998), Coate and Ravaillon (1993), Kocherlakota (1996) and Ligon, Thomas and Worrall
(2002) explore related models with limited commitment, while Mace (1991) and Cochrane (1991) are in-
�uential empirical studies of consumption insurance. These papers do not study the e¤ects of network
structure.
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a set L of links, where a link is an unordered pair of distinct vertices. Unless otherwise

stated, we assume that the network is �nite; the supplementary appendix discusses how to

extend our setup to in�nite networks. Each link in the network represents a friendship or

business relationship between the two parties involved. We assume that the strength of these

relationships is determined outside the model, and that they are measured by a capacity.

De�nition 1 A capacity is a function c : W �W ! R such that c(i; j) > 0 if (i; j) 2 L and

c(i; j) = 0 otherwise.

The capacity of an (i; j) link measures the bene�t that i derives from his relationship

with j. These bene�ts can represent the direct utility that agents derive from interacting

with each other, or the utility or monetary value of economic interaction in the present or

in future periods. For ease of presentation, we assume that the strength of relationships is

symmetric, so that c(i; j) = c(j; i) for all i and j. All our results extend to the case with

asymmetric capacities.

Agents in this economy face uncertainty in the form of endowment risk. We denote the

vector of endowment realizations by e = (ei)i2W , which is drawn from a commonly known

joint distribution. The vector of endowments is observed by all agents.

A risk-sharing arrangement speci�es a collection of bilateral transfer payments te =
�
teij
�
,

where teij is the net dollar amount transferred from agent i to agent j in state of the world e,

so that teij = �teji by de�nition. The risk-sharing arrangement te implements a consumption

allocation xe where xei = ei �
P

j t
e
ij. For simplicity, we suppress the dependence of the

transfers teij and consumption allocation x
e on e for the rest of the paper.

An agent who consumes xi enjoys utility Ui (xi; ci), where ci =
P

j c(i; j) denotes the

total value that agent i derives from all his relationships in the network, and U is strictly

increasing and concave. To simplify exposition, in the body of the paper we focus on the

analytically convenient case where consumption and friendship are perfect substitutes, so

that the utility of i is Ui (xi + ci). In the Supplementary Appendix we extend the model to

the case when consumption and friendship are imperfect substitutes, and show that under

weak conditions, our qualitative conclusions extend. The agent�s ex-ante expected payo¤ is

EUi (xi + ci), where the expectation is taken over the realization of endowment shocks.
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We say that a risk-sharing arrangement is incentive compatible if every agent i prefers

to make each of his promised transfers tij rather than lose the (i; j) link and its associated

value. Because consumption and friendships are perfect substitutes, incentive compatibility

implies tij � c(i; j).

1.2 Discussion of modeling assumptions

Risk-sharing arrangement. The most literal interpretation of these arrangements, in the spirit

of Arrow and Debreu, is that agents choose an ex ante informal contract, which speci�es

payments for every conceivable realization of uncertainty. Alternatively, the consumption

allocation may also be determined ex post by a social norm that speci�es how to reallocate

goods among connected agents. For example, Fafchamps and Lund (2003) describe how

informal insurance is implemented through a collection of bilateral �quasi-loans,� where

households borrow from neighbors, who expect their kindness returned when they themselves

are hit by adverse shocks.

Exogenous capacities. We analyze a one-time risk-sharing arrangement in a network

where links and capacities are determined outside the model. The most direct interpretation

of this framework is that link values are generated by a number of social activities and

services besides risk-sharing. In this interpretation, the links themselves may be created

through a long term network formation process largely shaped by factors outside our model,

such kinship and geographic proximity. An alternative view is that link capacities are shaped

endogenously by the insurance bene�ts that they generate. One approach to modeling this

e¤ect is to allow agents to invest in socializing: higher socializing leads to higher capacities

and hence greater insurance. We explore this extension of our framework in Section 4. In

an even richer environment with explicit dynamics, the value of a network connection might

be determined in part by the ability to conduct insurance transactions through the link in

future periods. As Bloch et al. (2008) show in a related model, this leads to restrictions

on the equilibrium network structure and link values. We leave the investigation of such a

framework for future research.

Incentive compatibility. Our notion of incentive compatibility is motivated by Karlan et

al. (2009). In their model of informal borrowing, a link between two agents is destroyed if a
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promised transfer is not made. They develop explicit micro-foundations for this assumption

where the failure to make a transfer is a signal that the agent no longer values his friend, in

which case these former friends �nd it optimal not to interact with each other in the future.5

An alternative justi�cation is that people break a link for emotional or instinctive reasons

when a promise is not kept; Fehr and Gachter (2000) provide evidence for such behavior.

Full information. Our model assumes that agents in the community can observe the

vector of endowment realization so that they know what transfer payments to expect from

their neighbors and how much to send. Full information about endowments seems reasonable

in many village environments, in which individuals can easily observe the state of livestock

or crops. For example, Udry (1994), shows that asymmetric information between borrowers

and lenders is relatively unimportant in villages in Northern Nigeria.

1.3 Equivalence of Link-Level Punishments with Individual Devi-

ations and Ostracism with Coalitional Deviations

This Section establishes our main theoretical result: that our model of link-level punishments

is equivalent to ostracism-based enforcement in the presence of coalitional deviations. A plau-

sible and commonly explored way of enforcing cooperation in social interactions is ostracism,

in which a deviator is punished by all his network neighbors cutting their links with him.6 It

is easy to see that, absent other constraints, this type of enforcement mechanism� because

the potential punishment following a deviation is larger� can implement higher levels of

sharing than our basic model.

Yet, by only considering individual deviators, this form of ostracism abstracts away from

the possibility of people siding with their close friends, and hence seems implausibly strong.

For example, it seems unlikely that a person would punish a cousin or a sister just because she

defected on a common acquaintance. To address this issue, we propose a version of ostracism

which allows not only individuals, but also coalitions to deviate.7 To illustrate why coalitional

5In the supplementary appendix we develop similar foundations for the present model, in which the
value of connections is earned in a �friendship game.�See Ambrus et al. (2012) (available at http://www.
socialcollateral.org/risksharing/supplementary_appendix.pdf).

6Versions of this idea are explored in Greif (1993), Kandori (1992) and Dixit (2003).
7Genicot and Ray (2003) follow a similar approach in a model of group formation.
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deviations help in this matter, suppose that i, j and k form a triangle network, and that k is

a weak friend of both i and j, who in turn are strongly connected cousins. In this network,

ostracism against individual deviators could enforce a large transfer from i to k, because, in

the event that i defaults on that transfer, she would be badly punished by the loss of both her

links. But if we allow for coalitional deviations as well, then� because the strong connection

with a cousin is more valuable than a weak connection to an acquaintance� agents i and

j may collectively �nd it more pro�table to cut their weak links to k and redistribute the

required payment among themselves. Thus, coalitional deviations, by allowing people to

side with their close social contacts, impose additional plausible restrictions on the set of

arrangements.

To formalize the idea of ostracism in the presence of coalitional deviations, we need some

de�nitions. For any group of agents F , we de�ne the perimeter c [F ] of F to be sum of the

values of all links between the group and the rest of the community:

c [F ] =
X

i2F , j =2F

c (i; j) (1)

Intuitively, the perimeter is the maximum extent to which the rest of the community could

punish group F using ostracism. Similarly, we de�ne the total endowment of the group as

eF and their total consumption under a risk-sharing arrangement as xF .

De�nition 2 A risk-sharing arrangement is coalition-proof if eF � xF � c [F ] holds for all

groups of agents F .

The arrangement is coalition-proof if no group has an incentive to deviate: the net transfer

between any group of agents and the rest of the community, de�ned as the di¤erence between

the group�s total endowment and total consumption, does not exceed the sum of the values

of all links connecting the group and the rest of the community. In this de�nition we only

look at the incentives of the coalition as a whole; but in the supplementary appendix we

show that, in our context, the simple notion of coalition-proofness we use above is equivalent

to coalition-proofness along the lines of Bernheim, Peleg and Whinston (1987), i.e., allowing

only for credible coalitional deviations that are not prone to further credible deviations by
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subcoalitions. The intuition behind this is that in our framework any such further deviation

by a subcoalition is also a pro�table coalitional deviation in the �rst place (i.e., even in the

absence of the original deviation). Also note that the extent of ostracism we allow for in

this de�nition� given the possibility of coalitional deviations� is the harshest possible. More

limited ostracism, such as punishing a coalition by only those who are within a given social

distance of the agents who have been defected on, would therefore yield lower risk-sharing.

Theorem 1 A consumption allocation x that is feasible (
P
xi =

P
ei) is suppported by

ostracism in the presence of coalitional deviations if and only if it can be implemented by

an incentive-compatible informal risk-sharing arrangement.

The theorem states that ostracism, when combined with coalitional deviations, imple-

ments exactly the same insurance arrangements as link-level punishment. In essence, we have

two opposing forces: while ostracising individual deviators increases the set of enforceable

allocations, allowing for coalitional deviators reduces it. In the perfect substitutes environ-

ment these two forces exactly cancel. To understand the intuition for the Theorem, �rst

note that one direction is immediate. Any arrangement that can be implemented by link-

level punishments can also be implemented by coalitional ostracism: since each transfer is

bounded by the capacity of the link, the same inequality must also hold when transfers are

added up along the perimeter of a group.

Showing the converse� that coalition-proof ostracism cannot implement more than link

level punishments� is more di¢ cult, and builds on the mathematical theory of network

�ows. For an intuition, consider a feasible and coalition-proof consumption allocation x. To

implement this allocation with link-level punishments, we need a set of transfers which�

respecting the capacity constraints over links� move money from those who, in autarky, have

�too much� (ei > xi) to those who, in autarky, have �too little� (ei < xi) relative to the

target level of consumption. To build intuition for why such transfers exist, imagine that

t is the transfer arrangement that gets �closest� to implementing x. Given the allocation

implemented by t, let F denote the set of all agents to whom, respecting the capacity

constraints, additional consumption goods from agents with ei > xi can still be transferred

through the network. They key insight is that unless t implements x, the set F forms a
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blocking coalition for arrangement x, contradicting the assumption that x is coalition-proof.

This follows because� by its construction as the maximal set of agents to whom resources

can still �ow� no additional amount can be sent through the perimeter of F , violating the

coalitional constraint eF � xF � c [F ] unless x is already implemented by t.

A natural question about the Theorem is whether a weaker version of coalition-proofness,

in which only a smaller set of coalitions� e.g., those with a limited number of participants�

are allowed to deviate is su¢ cient for the equivalence. The answer to this question is neg-

ative. To see why, consider the �island�network in Figure 3, which is a complete network

which consists of two equal-sized communities. For concreteness, suppose that there are 100

agents in each community, that all within-community links have equal capacities of 100, and

that all cross-community links also have equal capacities of 0.01. Consider the arrangement

which sends, from the �rst to the second community, 0.01 units of the consumption good

over every cross-community link. This arrangement transfers in total 100 units of consump-

tion: each agent in the �rst community contributes one unit which is equally distributed to

all agents in the second community. Because capacity constraints are satis�ed, this is an

incentive-compatible transfer arrangement; but because all links used in the arrangement

are operating at full capacity, no additional transfer from the �rst to the second community

would be incentive compatible. When looking at this arrangement from the perspective of

coalitions, the binding constraint which does not permit additional transfers corresponds to

the coalitional deviation of the �rst community. Thus, in this example, the �local� link-

level constraints map into a �global�coalitional constraint in which the blocking coalition

corresponds to half of the entire network.

Community 1 Community 2

Figure 3: Network of two �islands�with strong intra-island and weak inter-island links.

The theorem has two main implications. First, it shows how individual obligations ag-
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gregate up to social capital at the community level. Links matter not because they act as

conduits for transfer, but because they de�ne the costs of deviations, and hence the pat-

tern of obligations in the community. In particular, a coalition-proof arrangement does not

have to be implemented by transfers over links: intermediaries such as village elders could

also collect and distribute resources, as long as they respect the obligations of each group

of households, i.e., coalition-proofness.8 Hence our model need not predict long chains of

transfers in practice: these chains are likely to be shortened by intermediaries.

A second implication of the theorem is that it relates the geometry of the network to its

e¤ectiveness for risk-sharing. This connection forms the basis of our analysis in the following

section.

2 The limits to risk-sharing

In this section we use the equivalence between incentive compatibility and coalition-proofness

to explore how much risk-sharing can be obtained in a given network. Our central �nding is

that good risk-sharing requires social networks to have good �expansion properties�; that is,

all groups of agents should have enough connections with the rest of the community, relative

to group size.

2.1 Limits to full risk-sharing

We �rst use Theorem 1 to establish a negative result: full risk-sharing cannot be achieved

unless the network is extremely expansive, because coalitions with a relatively low �group

obligation�c [F ] will choose to deviate in some states.

To build intuition, consider the in�nite line, plane and binary tree networks depicted in

Figure 2, where all link capacities are equal to a �xed number c.9 For these examples, we

assume that endowment shocks are independent across agents, and take values +� or ��

with equal probability. We focus on implementing equal sharing, i.e., an arrangement where

8At the extreme, a single trusted intermediary could implement the allocation by collecting a �tax� of
ei � xi from each agent i for whom this is positive, and use these funds to pay the unlucky agents for whom
ei � xi is negative.

9We consider in�nite networks here because they are useful for building intuition.

14



all agents consume the per capita average endowment. This allocation is Pareto-optimal

when agents have identical preferences over consumption. Since our example networks are

in�nite, the law of large numbers implies that the average endowment is zero; equal sharing

thus requires all agents to consume zero with probability one.

Consider an interval set of consecutive agents F on the circle network (see Figure 2A).

The coalitional constraint for F is most likely to bind in the positive probability event where

all agents in F receive a positive shock +�. In this event, the zero consumption pro�le

dictates that members of F give jF j � � to the rest of the community; but they can only

commit to giving up c [F ] = 2c. Coalition proofness thus requires 2c � jF j � � for all F .

However, for any �xed c, this is violated for long enough intervals F . A similar negative

result holds for the more expansive plane network in Figure 2B. The perimeter of a square-

shaped set F is c [F ] = 4c
p
jF j; for a large enough square, this is smaller than jF j ��, which

is how much members of F would have to give up if they all get a positive shock +�.

However, these perimeter bounds do not rule out equal sharing for the yet more expansive

binary tree in Figure 2C. Here, the perimeter of any set F is at least c � jF j, and so for c � �,

no coalition of agents has to give up more than their group obligation in any realization.

These examples suggest that equal sharing can only be incentive compatible in networks

with good expansion properties, i.e., where the perimeter of sets grows in proportion with

set size. To measure expansiveness, we de�ne the �perimeter-area ratio�a[F ] = c [F ] = jF j,

where area stands for the number of agents in F . Intuitively, a [F ] represents the group�s

maximum obligation to the community relative to the group�s size. The next result tightens

the connection between expansiveness and insurance by characterizing full risk-sharing in

any network in terms of a [F ], under the assumptions that (1) the support of ei is the same

compact interval of length S for all agents; and (2) the support of ei given any realization

of (e�i) is the same as its unconditional support, for all i.10

Proposition 1 [Limits to full risk-sharing] Under the above assumptions, equal sharing

is supported by an incentive-compatible risk-sharing arrangement if and only if for every

subset of agents F the perimeter-area ratio satis�es a [F ] �
�
1� jF j

jW j

�
S.

10Bloch et al. (2008) impose the same condition on endowment shocks in their Assumption 1.
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The condition implies that a [F ] must be greater than the constant S=2 for any set of

size at most half the community. In particular, an implication for large networks is that

a [F ] must be bounded away from zero for such sets as the network size grows without

bound: because the the members of F must be willing to provide resources to the rest of the

community even when they all get the highest possible realization while everyone outside

gets the minimum. The above inequality ensures that the group has a large enough perimeter

to credibly pledge the required resources even in such extreme realizations. The condition is

violated for big groups on the line and plane networks because a [F ] can be arbitrarily small,

and only holds for highly expansive graphs like the binary tree.11

To further illustrate the implications of the Proposition, consider the two-island network

in Figure 3. This is a complete network in which each island has N=2 agents, each within-

island link has capacity ci and each cross-island link has capacity co. We assume that the

island network exhibits homophily, i.e., that within-island links are stronger: ci � co. We let

�c = (N=2�1)ci+(N=2)co denote the per capita total capacity. The homophily index (Golub

and Jackson 2012) of a group can be de�ned as the share of the capacity of within-group links

relative to the capacity of all links that a group has, H = (N=2� 1)ci=�c. Now suppose that

agents in this network are exposed to shock as above, and we attempt to implement equal

sharing. Clearly the realizations in which it is the most di¢ cult to achieve equal sharing

are when all agents in one island have a positive, and all agents in the other island have a

negative realization, i.e., when F is one of the islands. The condition in the Proposition for

this case simpli�es to (N=2)co � �, or equivalently �c(1�H) � �. Intuitively, in this network

full insurance is easier to implement if either link capacities are strong (�c high) or homophily

is weak (H is low).12

Full insurance in real world networks. We use data from a village community in Huaraz,

Peru to show that real-world networks are unlikely to be expansive enough to allow for full

insurance.13

11Families of networks where the perimeter-area ratio is bounded below by a positive constant are called
�expander graphs�in the computer science literature.
12Note that, unlike in the line and plane examples, here a [F ] = �c(1�H) is bounded away from zero when

H < 1. Thus, �xing �c at a high enough constant value, the islands network� and in particular the complete
network where all capacities are identical (ci = co)� is su¢ ciently expansive to implement full insurance for
any number of agents N .
13The data was collected by Dean Karlan, Markus Mobius and Tanya Rosenblat and is described in
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Figure 4: Expansiveness of the social network in Huaraz, Peru
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Figure 4A compares the expansiveness of the Huaraz network with the line and plane

(with approximately equal number of agents) as well as a �nite random network with the

same degree distribution as the Huaraz network. We use the latter network as a proxy for the

most expansive tree-like network that could be achieved in the Huaraz village community.14

For all these networks, link capacities are assumed to be equal across links and normalized so

that the per household average capacity is one. To measure expansiveness, we construct, for

each household, a collection of �ball�sets which contain all households within a �xed social

distance r. We then calculate the average of the perimeter-area ratio and set size for each

r, and plot the perimeter-area ratio as a function of size for all four networks. Comparing

across our three example networks illustrates our earlier discussion: the perimeter-area ratio

goes to zero quickly for the line network, goes to zero more slowly for the plane, and least

slowly for the random netw

The key curve in the Figure is the solid line representing the actual social network in

Huaraz. This curve lies slightly above the plane but well below the random network, and

approaches zero as set sizes grow, with a slope that parallels the curve for the plane. In fact,

Appendix B in more detail.
14There are formal results in the computer science and mathematics literature showing that the local

structure of �nite random network is approximately a random tree (Wormald 1999). Recent papers in the
economics literature expand these results and apply them to economic models (Fainmesser and Goldberg
2012, Campbell 2010).
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the Huaraz network is about as expansive as the three-dimensional �3D-cube�of approxi-

mately equal size which we have included in Figure 4A as well. It follows that the Huaraz

network is less expansive than the tree-like random network, and hence our model predicts

that full insurance is not coalition-proof.

The result is the same if we look at the two sub-network of relatives and non-relative

friends, respectively, in Figure 4B: the non-relative network is slightly more expansive, but

does not approach the expansiveness of the random network.

Figure 4 suggests that the expansion properties of the Huaraz network are similar to�

somewhat better than� the plane. A plausible reason is that the Huaraz network, like many

social networks in practice, is partly organized on the basis of geographic distance. For

example, the average distance between two connected agents in this network is only 42

meters, while the average distance between two randomly selected addresses is 132 meters.

This correlation between distance and network connections can result in expansion properties

similar to the plane, if agents tend to have friends at close physical distance in multiple

directions, e.g., both horizontally and vertically on a map. This logic suggests that to

understand partial insurance in real world networks, exploring plane-like networks is a useful

�rst step.

2.2 Partial risk-sharing in less expansive networks

Plane networks turn out to be just su¢ ciently well-connected to generate very good risk-

sharing in most states of the world. The key insight is that with a two-dimensional structure,

outcomes where the coalitional constraint binds under equal sharing become rare. To see

the logic, consider again the regular plane with the i.i.d. +�=� � shocks. As we have seen,

equal sharing fails because households in a large n by n square F would need to give up n2 ��

resources if all of them get a positive shock, which is an order of magnitude larger than the

perimeter c [F ] � n.

The key is that for large n, such extreme realizations are unlikely, and in typical realiza-

tions the required transfers do not exceed the perimeter. With i.i.d. shocks, the standard

deviation of the group�s endowment is only n�, which is only of order n even though it is

the sum of n2 random variables � intuitively, a lot of the idiosyncratic shocks cancel out
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within the group.15 Thus the �typical shock�in F has the same order of magnitude as the

maximum pledgeable amount, and hence potentially deviating coalitions are rare. The same

logic works with correlated shocks, as long as correlation declines fast enough with distance.

By way of contrast, the argument breaks down for the line, since the perimeter of even large

interval sets is only 2c, a constant.

2.3 Plane and line networks

Our intuitive analysis suggests that when shocks are not too correlated, risk-sharing on the

plane should be reasonably good, and substantially better than on the line. We �rst formalize

these ideas and then extend them to less regular networks.

Partial risk-sharing measure. We measure partial risk-sharing as the average utility loss

relative to the benchmark of equal sharing where all agents consume the average endowment

e = eW=jW j :

UDISP (x) = E
1

jW j
X
i2W

fUi (e)� Ui (xi)g :

This �utility-based dispersion,� is simply the di¤erence between average utility under

partial and full sharing. Here we ignore the dependence of utility on link consumption to

simplify notation.

If all agents have the same quadratic utility function over x, then we can express UDISP as

an increasing function of

SDISP (x) =

"
E
1

jW j
X
i2W
(xi � e)2

#1=2
; (2)

which is the square-root of the expected cross-sectional variance of x. For non-quadratic

utilities, SDISP (x) can be interpreted as a second order approximation of the utility based

measure. SDISP is a tractable measure that inherits the intuitive properties of UDISP :

it is zero only under equal sharing and positive otherwise, and its magnitude measures the

departure from equal sharing: e.g., if ei are +�=�� with equal probabilities, then in autarky
15The sum of n2 i.i.d. random variables has variance n2�2 and hence standard deviation n�.
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SDISP (e) = �. We use SDISP as our central measure in the analysis below.16

Shocks with limited correlation. While we focused on i.i.d. symmetric shocks in our

example, the formal result accommodates much more general endowment shocks. The key

requirements are that shocks do not have fat tails and are not too correlated; we formalize

these using assumptions (P1) to (P5) below.

We model the source of uncertainty as a collection of independent random variables yj,

j = 1; :::;1, which can represent both idiosyncratic shocks like illness and aggregate shocks

like weather. Like in a factor model, endowments are determined as linear functions of these

basic shocks: ei =
P

j �ijyj.where �ij measures the extent to which agent i is exposed to

shock j. We assume that ei and yj satisfy the following.17

(P1) [Thin tails] yj are independent, have zero mean and unit variance, and satisfy that

there exists K > 0 such that log[E(exp [�yj])] � K�2=2 for all � > 0.

(P2) [Bounded variance] There exists K > 0 such that
P

j �
2
ij < K for all i.

(P3) [Limited correlation] Endowments satisfy �F= jF j � K � jF j�1=2 for some K > 0,

where �F is the standard deviation of eF .

(P4) [More people have more risk] For all G � F , we have �G � �F .

(P5) [Sharing with more people is always good.] For all G � F , we have �F= jF j �

�G= jGj.

Here (P1) is a uniform bound on the moment-generating function of yj, which allows us

to use the theory of large deviations to bound the tails of ei. (P1) is satis�ed for example

if yj are i.i.d. normal, or if they have a common compact support. Property (P3) requires

that shocks are not too correlated, so that aggregate uncertainty disappears at the same

rate as the square root of set size. This condition considerably relaxes the i.i.d. assumption;

for example, on the line or plane, (P3) is satis�ed if the correlation between ei decays

geometrically with network distance.

Formal results. We now turn to a formal result on risk-sharing on the plane and line

networks. Although the formal result assumes that all links have equal capacities c, it would

16Equation (2) only de�nes SDISP for �nite networks. For in�nite networks, we de�ne it to be the lim
sup of (2), taken over an increasing sequence of ball sets centered around some agent i. For the line and the
plane, the choice of i does not a¤ect this lim sup.
17From now on we use the convention that K denotes a positive constant, the value of which at each

occurance of the phrase �there exists K�may be di¤erent; and that the same holds for K 0 and for K 00.
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continue to hold� with di¤erent constants� if all link capacities are from a bounded interval

[c=k; ck] for some k > 0. We focus on in�nite networks because they are more convenient for

stating our asymptotic result.

Proposition 2 Under properties (P1)-(P5), there exist positive constants K, K 0 and K 00

such that

(i) On the in�nite line with capacities c and i.i.d. shocks, we have SDISP (x) � K=c

for all incentive-compatible risk-sharing arrangements.

(ii) On the in�nite plane with capacities c, we have SDISP (x) � K 0 exp
�
�K 00c2=3

�
for

some incentive-compatible risk-sharing arrangement.

This Proposition characterizes the rate of convergence to full risk-sharing as capacities

increase. The contrast between the line and plane is remarkable. Risk-sharing is relatively

poor on the line: SDISP goes to zero at a slow polynomial rate of 1=c as c goes to in�nity. In

contrast, the rate of convergence for the plane is exponentially fast, con�rming our intuition

that agents are able to share typical shocks due to the more expansive structure.

The proof of (i) essentially builds on our earlier arguments: for long enough intervals,

much of the interval-speci�c shock must remain trapped in the set, because the perimeter is

only 2c. Even if agents perfectly smooth inside the interval, overall dispersion remains high.

The result for the plane is much more di¢ cult, and requires going beyond our previous

intuition: even though the coalitional constraint is rarely violated for any particular set F,

we need an allocation that satis�es the constraints of all sets. Equivalently, we need to

construct a transfer arrangement such that the typical �ow on every link meets the capacity

constraint. The key idea is to construct this arrangement from the ground up. First we

partition the plane into 2 by 2 squares of agents and implement equal sharing in each of

these. Then we implement fully sharing in 4 by 4 squares, then in 8 by 8 ones, and so

on. After n iterations, we obtain full sharing of endowments in 2n by 2n �super-squares�.

Because each link is used once in every round, the construction uses every link at most n

times. By our earlier intuition, each time a link is used, the required transfer is typically of

order one, resulting in a total �ow per link of order n. This is the uniform bound on the �ow

over every link that we require for exponentially good risk-sharing. Since the arrangement
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does not yet account for capacity constraints, we use the theory of large deviations to bound

the exceptional event when incentive compatibility is violated, obtaining the bound in the

proposition.

Simulations. Numerical simulations suggest that the asymptotic results of the Proposi-

tion provide a good description of behavior for �nite c as well. Figure 5 shows constrained

optimal allocations for �nite line and plane networks, for a typical realization of uniform

shocks with support [�1; 1].18 Figure 5A shows the endowment realizations for both the line

and the plane network: darker red (green) squares correspond to lower (higher) endowments.

We use the same vector of realizations for both networks. The SDISP of these realizations

is 0:55 in the absence of any insurance. Now consider Figure 5B, where we assume that

the average capacity per agent is 1: thus each link has value c = 0:5 in the line network

and c = 0:25 in the plane. For these capacities, the �gure depicts the optimal, SDISP

minimizing incentive compatible allocation. The contrast between the line and the plane is

remarkable: for the line, we see substantial color variation re�ecting imperfect risk-sharing

(SDISP = 24%), while the plane achieves better insurance (SDISP = 12%). As capaci-

ties increase, the contrast becomes sharper. In Figure 5C, the per capita capacity in both

networks is assumed to be 1:4, SDISP on the line is still 20%, while on the plane it falls to

3%. Finally, in Figure 5D, when the per capita capacity is 2, dispersion on the line falls to

14% while full risk-sharing is achieved on the plane (SDISP = 0). We conclude that the

asymptotic results of the Proposition provide a good characterization of insurance behavior

in �nite networks and for �nite c as well.

2.4 Geographic networks

If real world networks are similar to the plane, Proposition 2 suggests that they should allow

for reasonably good risk-sharing. Many papers, in various contexts, show that geographic

proximity is a major determinant of interpersonal relationships (see for example Conley and

Udry (2010), Fafchamps and Gubert (2007) in development contexts, and Lee, Mancini and

Maxwell (1998,1995), Topa (2001) in other contexts). This motivates our investigation below

18In the simulations opposing edges of the networks are connected, so the line is in fact a circle and the
plane a torus.
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Figure 5: Risk-sharing simulations on the line and the plane for increasing capacities

Panel A: initial endowments (uniform over [−1,1])
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Panel B: risk-sharing with total capacity 1 per agent
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Panel C: risk-sharing with total capacity 1.4 per agent
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Panel D: risk-sharing with total capacity 2 per agent
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to de�ne plane-like networks in a spatial context.

As Figure 1 illustrates, real-world social networks have a much less regular structure

than the plane. Nevertheless, these networks can often be represented in a way that closely

resembles a regular plane, because in the physical map of the community, households tend

to have social connections at close distances and in multiple directions. Intuitively, if a

su¢ ciently accurate representation of this sort does exist, then our results on good risk-

sharing are likely to carry over to real world social networks.

To formally de�ne what makes a representation �su¢ ciently accurate,�we consider (1)

a function � : W ! R2 that maps agents in a social network to locations in R2; and (2) a

two dimensional grid that divides R2 into squares of side length A. This pair constitutes an

even representation if the number of households inside each grid cell is uniformly bounded

by positive constants from below and above. The representation is local if geographically

close agents are connected through a path that is also geographically close: for any d > 0

and i and j at geographic distance d (� (i) ; � (j)) � d, there is a path connecting i and j

such that for all agents h in the path, d (� (i) ; � (h)) is bounded from above by a constant

that only depends on d. Finally, the representation exhibits no separating avenues if the

sum of capacities of links between any two neighboring squares is uniformly bounded away

from zero; this is the key condition that guarantees plane-like expansion properties.

A network is called a geographic network if it has a representation that is even, local, and

has no separating avenues, and all link capacities are bounded away from zero.19

Corollary 1 In a geographic network, if (P1)-(P5) is satis�ed, then there exist positive con-

stants K 0 and K 00 such that SDISP (x) � K 0 exp
�
�K 00

c2=3
�
for some incentive-compatible

risk-sharing arrangement.

Thus the risk-sharing properties of geographic networks are similar to the plane. The

proof combines Proposition 2 with a renormalization argument. We take a geographic net-

work, and superimpose on its planar representation a grid with A by A squares. We then

19A geographic network is by assumption in�nite; we de�ne SDISP for these networks as the lim sup of
(2) over a sequence of increasing squares in the map representation. The exact sequence does not matter for
the results.
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merge all people within each square to create a new network. Because of the key no separat-

ing avenues condition, this new network is essentially a plane, and hence Proposition 2 (ii)

can be applied to yield a bound for SDISP in the new network. We then pull this bound

back to the old network using the fact that the embedding is even and local.

Geographic networks in practice. Because real-world networks are �nite, they cannot

satisfy the conditions required for geographic networks, which are by de�nition in�nite.

Nevertheless, it is possible to evaluate whether concrete �nite networks share some of the

features required for geographic networks. Here, we develop an embedding to show that the

Huaraz network gets close to satisfying the key conditions of evenness and no separating

avenues, suggesting that the same properties that generate good risk-sharing for geographic

networks are also at work in the Huaraz case. Figure 6A shows the natural geographic map

of household locations, referred to as lots, in this village. In Figure 6B the horizontal and

vertical coordinates of the map are re-scaled to �t the community into the unit square, and

a grid of 16 squares is also depicted. As is clear from Figure 6B, this representation is

unlikely to satisfy the geographic networks condition, because there are empty squares and

the distribution of agents is quite heterogeneous. To construct a �geographic�representation

of this Huaraz community, we transform the map using a di¤usion algorithm described in

detail in the supplementary appendix. The basic idea is to stretch the network uniformly

over the unit square using a procedure in which nearby lots �repel� each other and hence

lots will tend to escape to empty spaces. Figures 6C and 6D depict the result after one and

�ve rounds of iteration: the distribution of lots becomes gradually more homogenous. After

23 iterations (Figure 6E), the distribution of lots is almost completely uniform. Figure 6E

also shows the number of lots in each of the 16 squares, con�rming that we have an even

embedding.

To evaluate the key �no separating avenues�condition, Figure 6E also shows the number

of links crossing the sides of each square.20 The agreement with our theoretical condition is

very good: except for one side of the square in the lower right corner, there are no separating

avenues between any two neighboring squares. The average number of nodes in each grid cell

20Opposing sides of the large square are assumed to be geographically next to each other, generating the
topology of a torus.
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Figure 6: Stretching a real-world network to construct a geographic representation

Panel A: original map of Huaraz community

A.1
A.2

A.3
A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

A.14

A.15A.16

A.45

A.46

A.47

A.48

A.40
A.41

A.42
A.43

A.50

A.17

A.18
A.19

A.20
A.21

A.22
A.23

A.24
A.25

A.27
A.28

A.29
A.31

A.32
A.33

A.34A.35

A.36

A.37

A.38

A.39

A.44A.49

B.1
B.2

B.3
B.5

B.6
B.7

B.8
B.9

B.10
B.11

B.12
B.13

B.14

B.15 B.16

B.17
B.18

B.19
B.20

B.21

B.22

B.23

C.2
C.3

C.4
C.5

C.6
C.7

C.8

C.9
C.10

C.11
C.12

C.13
C.14

C.16
C.17

C.18

C.19

C.20

D.1
D.2

D.3
D.4

D.5

D.6D.7

D.8

D.9D.10

D.11

D.12

D.13D.14D.15D.16

D.17D.18

D.19

D.20

D.21D.22

D.23

D.24

D.25

D.26

E.1
E.2

E.3
E.4

E.5

E.6

E.9
E.10

E.11E.12

E.13

E.14

E.16

E.17
E.18

E.20
E.39

E.40

E.21

E.22

E.23 E.24

E.25
E.26

E.46

E.49E.33

E.32
E.31

E.50
E.35

E.29

E.34
E.55

E.52

E.53

E.54

E.43

E.36

E.45 E.51

E.28

E.57

E.56
E.30

E.37

E.27

F.1

F.2
F.3

F.4
F.5

F.6
F.7

F.8F.9

F.10

F.11

F.12F.13

F.14

F.15

F.18
F.20

F.21

F.22
F.23

F.24
F.25F.26F.27F.28

F.29

F.30

F.31

F.32

F.33 F.34

F.35 F.36

G.2

G.3
G.4

G.5
G.50

G.49

G.7
G.9

G.36
G.45

G.34
G.47

G.40
G.6

G.43
G.39

G.8
G.32

G.33
G.10

G.31
G.30

G.29
G.27

G.28G.51

G.26

G.25

G.23
G.24

G.11G.12G.13G.14G.15

G.17

G.20

G.21

G.22

G.44

G.35

G.42

H.1
H.2

H.3
H.4

H.5

H.6

H.7H.8H.10H.11H.12

H.13H.14
H.15H.16

H.17H.18H.19

H.20 H.21

I.11

I.8
I.9

I.12
I.13I.14I.15

I.16

I.17I.18
I.19

I.20

I.21

I.22

I.23I.24
I.25

I.26

I.27

I.1
I.2

I.3 I.4

I.5I.7 I.6

I.10

J.1
J.2J.3

J.4 J.5

J.6
J.7

J.8 J.9

J.10

J.11 J.12

J.13

J.14 J.15

J.16

J.17

J.18J.19

X.1

X.2

X.3

X.4

X.5

X.6

X.7

X.8

X.9

Panel B: iteration 0
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is 12.7 and the number of connections to neighboring squares is 49.4. To better understand

what drives the success of this embedding, note that in Figure 6E each of the 16 squares

is di¤erently colored, and the corresponding households are represented by the same colors

in panels A to D as well. In the original image (Figure 6A), households are geographically

concentrated by color; hence the reason why the Huaraz network has similar expansion

properties as the plane is that households tend to have friends in multiple directions at close

distance in the original map.21

Numerical risk-sharing simulations suggest that the Huaraz social network in fact behaves

very much like the plane network: we calculate SDISP for uniform shocks with support

[�1; 1] and per capita capacities 1, 1:4 and 2. We obtain SDISP equal to 0:20, 0:11 and

0:02, respectively, which tracks the rapid decline of SDISP on the plane. The �nding that

the Huaraz community resembles a �geographic network�, in part because connections are

correlated with physical distance suggests that village networks in developing countries may

be similarly expansive. Our results then imply that typical village networks should facilitate

high, although imperfect, levels of informal risk-sharing � consistent with the empirical

�ndings of Townsend (1994), Ogaki and Zhang (2001), Mazzocco (2007) and others.

3 Constrained e¢ cient risk-sharing

In this section, we study constrained e¢ cient arrangements which are Pareto-optimal given

the enforcement constraints imposed by the network. Such second-best arrangements are a

natural benchmark because they achieve the highest possible level of risk-sharing in a given

network. Such arrangements can either be proposed and implemented by a village leader, or

attained in ex ante coalitional bargaining, possibly through multiple rounds of renegotiation

(see Gomes (2000) and Aghion, Antras and Helpman (2007) that such bargaining procedures

lead to e¢ cient agreements). In the Supplementary Appendix we also illustrate how a

decentralized sharing procedure between neighboring agents, as in Bramoulle and Kranton

21In contrast, when we apply the same di¤usion procedure to a �nite circle network with the same number
of nodes and equivalent average degree, we �nd that the representation is far from satisfying the no separating
avenues condition. In particular, Figure 10 in the Supplementary appendix has many more gaps, especially
in the center; and the average number of neighboring square connections is now only 23.0 which is less than
half the number of neighboring connections in Figure 6E.
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(2006) can achieve any constrained e¢ cient arrangement.

3.1 Risk-sharing islands

Our main result is that constrained-e¢ cient insurance arrangements exhibit an �island struc-

ture.�For every realization of endowments, connected islands of agents emerge endogenously,

such that risk-sharing is perfect within each island, while links between di¤erent islands are

�blocked�in the sense that transfers equal the link capacities. This result follows from the

equivalence between constrained e¢ cient arrangements and a planner�s problem formalized

below.

The intuition for islands can be seen by focusing on a utilitarian social planner who

maximizes average expected utility. Whenever two agents consume di¤erent amounts, this

planner can increase welfare by shifting a small amount from the agent with higher- to the

one with lower consumption. But in the optimum, such shifts must violate the enforcement

constraints. Hence linked agents either consume the same amount and belong to the same

�island�, or consume di¤erent amounts and are connected by a blocked link that does not

allow for further transfers. Panels B-D of Figure 5 depict constrained e¢ cient allocations

corresponding to such a social planner: islands within which consumption is equalized are

indicated by di¤erent colors.

For a formal analysis, let (�i) be a set of positive weights, and de�ne the planner�s problem

as

max
(t)

X
i2W

�i � EUi (xi) (3)

subject to the constraint that all transfers respect the capacity constraints of the social

network.

Proposition 3 Every constrained e¢ cient risk-sharing arrangement is the solution to a

planner�s problem with some set of weights (�i). Conversely, any solution to the planner�s

problem is constrained e¢ cient.

The proof of this result parallels a similar equivalence result for risk-sharing in syndi-

cates by Wilson (1968). Because the set of coalition-proof payo¤ vectors is convex� when
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two transfers satisfy a capacity constraint, so does their convex combination� e¢ cient al-

locations, which by de�nition lie on the boundary of this set, can be supported by tangent

hyperplanes. The normal vector (�i) associated with the suporting hyperplane gives the

appropriate planner�s problem.22 ;23

Maximizing the planner�s expected utility E
P
�iUi is equivalent to maximizing realized

utility
P
�iUi independently for each state. This yields a set of intuitive �rst-order conditions

for each realization. To state these conditions, recall that a link from i to j is blocked in a

given realization if tij = c (i; j), i.e., if the link is used at full capacity.

Proposition 4 An incentive-compatible arrangement (tij) is constrained e¢ cient if and only

if there exist positive weights (�i)i2W such that for every i; j 2 W one of the following

conditions hold:

1) �iU 0i(xi) = �jU
0
j(xj)

2) �iU 0i(xi) > �jU
0
j(xj) and the link from j to i is blocked

3) �iU 0i(xi) < �jU
0
j(xj) and the link from i to j is blocked.

This result generalizes our earlier intuition for arbitrary welfare weights. Su¢ ciency

and uniqueness of the �rst-order conditions follow from the strict concavity of the planner�s

objective function and the convexity of the domain. The Proposition also implies that for

any pair of agents i and j, if �iU 0i < �jU
0
j, then along every all path connecting i and j, at

least one link must be blocked. Therefore, in any realization agents can be partitioned into

connected risk-sharing islands such that within an island agents share risk perfectly, while

cross-island insurance is limited because boundary links operate at full capacity.

Proposition 5 [Risk-sharing islands] In any realization e the set of agents can be parti-

tioned into connected components Wk such that �iU 0i = �jU
0
j if i; j 2 Wk, and jtijj = c (i; j)

if i 2 Wk; j =2 Wk.

Sharing islands partition the network in each realization. Using the coalitional inter-

pretation, these islands can be thought of in terms of �almost-deviating coalitions.� For

22See the Supplementary Appendix for extending this result to imperfect substitutes.
23All simulations in Section 2 compute the constrained-e¢ cient arrangement with equal � weights under

quadratic utility.
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example, if all links on the boundary of an island are blocked in the outward direction,

then members of this are transferring the highest amount they can credibly pledge to the

community, and hence are indi¤erent to deviating as a coalition. More generally, it can be

shown that the island decomposition obtains by splitting the network along the boundaries

of all almost-deviating coalitions. In e¤ect, almost deviating coalitions act as �bottleneck

groups�limiting the �ow of resources in a way parallel to the bottleneck agents emphasized

in Bloch et al. (2008). The emergence of network-based risk-pooling islands is consistent

with evidence documented by Attanasio et al. (2009) about the importance of social ties in

the formation of insurance groups in Colombian villages.

When link capacities increase, the planner becomes less constrained and risk-sharing

islands tend to grow in size. This is illustrated by Figure 5, panels B to D. In Figure 5B,

where per capita capacity is one, insurance is fairly local: there are 30 islands on the line

and 17 on the plane. As the per capita capacity goes up to 1:4, in Figure 5C there are 17

islands on the line and only 4 on the plane; and in Figure 5D where average capacity is 2

per agent, there are 13 islands on the line and just one, fully insured island on the plane. In

these simulations, the number of islands closely tracks the degree of insurance.

As is clear from Figure 5, in the island partition the size and location of islands, and hence

the set of agents who fully share each others�shocks, is endogenous to the realization and

the network. This result di¤erentiates our model from group-based models of risk-sharing,

where insurance groups are exogenous and do not vary with the realization.

3.2 Spillover e¤ects and local sharing

The island result also helps us characterize how shocks propagate in the network as a function

of social distance. We show that shocks are shared to a greater degree with socially close

agents, and hence network-based insurance is local : the consumption of socially close agents

comoves more strongly than that of socially distant ones.

To formalize this point, we introduce a slightly stronger de�nition of risk-sharing islands.

Fix an endowment realization (ei), and let W (i) denote the sharing island containing i. We

now de�ne cW (i) to be the maximal connected set of agents j such that there exists a path
between i and j along which no links are blocked in either direction. With this de�nition,
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cW (i) � W (i) because Proposition 5 implies that links connecting di¤erent islands are all

blocked. Except for knife-edge cases when the transfer constraint is reached but does not bind

yet� which have zero probability when the distribution of shocks is absolutely continuous�

the two de�nitions are equivalent: cW (i) =W (i).
We now explore the e¤ects of an idiosyncratic shock to one agent�s endowment on the

consumption of others. Fix a constrained e¢ cient arrangement, and consider two realizations

e = (ei) and e0 = (e0i), where e
0
i < ei for some i but e

0
j = ej for all others j 6= i. E¤ectively,

agent i is experiencing an idiosyncratic negative shock in e0 relative to e (or a positive shock

like aid in e relative to e0). We can measure the impact of this negative shock on another

agent j by computing the ratio of marginal utilities of j before and after the shock. Formally,

let x and x0 denote the consumption vectors associated with e and e0, then we can de�ne

MUCj =
U 0j (x

0)

U 0j (x)

which measures the marginal utility cost of the shock for agent j. A largerMUCj corresponds

to a higher increase in marginal utility and hence a greater consumption drop.

Proposition 6 [Spillovers and local sharing] Consider two realizations e = (ei) and e0 =

(e0i), where e
0
i < ei for some i but e

0
j = ej for all j 6= i. Then in any second best arrangement

x:

(i) [Monotonicity] xj(e0) � xj(e) for all j, and if j 2 cW (i) then xj(e0) < xj(e).

(ii) [Local sharing] There exists � > 0 such that jei � e0ij < � implies MUCi = MUCj

for all j 2 cW (i), and xj (e0) = xj (e) for all j 2 WnW (i):
(iii) [More sharing with close friends] For any j 6= i, there exists a path i! j such that

for any agent l along the path, MUCl �MUCj.

Part (i) shows that spillovers are monotone: If one agent receives a negative shock,

the consumption of everybody else either decreases or remains constant. Moreover, the

agent is partially insured by all others in the same risk-sharing island, who all reduce their

consumption by a positive amount. Thus unless i is in a singleton island, he has access to at

least some insurance. Intuitively, links within cW (i) are not blocked, and hence all members
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of the island can help out a little. As part (ii) shows, for small shocks, the set of agents

who insure i is exactly cW (i). All these agents share an equal burden measured in terms of

the marginal utility cost MUC. Agents outside of W (i) do not reduce their consumption

at all.24 Finally, (iii) shows how the utility cost of agents varies by social distance. Indirect

friends provide less insurance to i than direct friends: for any agent j 6= i, there exists some

direct friend of i, denoted l, who shares at least as much of the burden of the shock as j

does.

The results of Proposition 6 are consistent with the empirical �ndings in Angelucci and

De Giorgi (2009), who show that Progresa, a conditional cash transfer program in rural

Mexico, leads to an increase in the consumption of the non-treated, which they attribute

to the spillover e¤ect of aid through the social network of the village. This is the logic of

part (i) in the Proposition. Angelucci et al. (2012) also show that much of the increase in

the consumption of the non-treated is due to the consumption increase of households who

are relatives of the treated, consistent with (ii) and (iii). The agreement between our results

and existing evidence suggests that a calibrating our model may be useful for quantifying

the welfare e¤ects of development aid taking into account network-based spillovers.

4 Endogenous Link Strength and Stability

This section presents an extension of our basic model in which the strength of social con-

nections is endogenously determined. The preceding sections, by assuming that capacities

are determined outside the model, take the view that link strength depends primarily on

bene�ts of socialization which are unrelated to informal insurance. We now consider the al-

ternative that agents choose their level of socialization to obtain better informal risk-sharing.

In this context, we use a very simple model to explore whether the di¤erence in insurance

outcomes between the line and plane networks is reduced, because people in the plane choose

to socialize relatively less, or ampli�ed, because people in the plane choose to socialize rela-

tively more. We leave a fuller analysis of insurance with endogenous link strength for future

research.

24In the knife edge case where cW (i) 6=W (i), agents in W (i) ncW (i) may or may not share.
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Setup. We consider an exogenous network which is symmetric in the sense that for any

pair of agents i and j there exists an automorphism of the network b (:) such that b(i) = j.25

We assume that, before shocks are realized, each agent chooses e¤ort ai to socialize with her

set of neighbors Ni. E¤ort is spread equally across all links of the agent, and, denoting the

degree of agents by d, for and given the vector of e¤orts a = (ai) capacities are determined

as

c (i; jja) = min
�ai
d
;
aj
d

�
: (4)

We assume that agent i�s incentives to socialize are determined by the utility function

EUi (xi � bci)� � � ai, where � captures the marginal cost of socializing, and bci = c (i; jja) if
the agent defects on an obligation with j, and zero otherwise. Slightly di¤erently from the

previous sections, this formulation assumes that link capacities enter utility not as positive,

but as potentially negative terms, which are activated by a deviation. This speci�cation, by

removing the direct utility e¤ect of increased socialization, allows us to isolate the insurance-

based incentive to invest in social links. Allowing link capacities to enter positively would

introduce a non-insurance-based motive to socialize.

We call the pair (a; t) a symmetric feasible social arrangement if t is an incentive-

compatible risk-sharing arrangement when capacities are given by c (i; jja), i.e., if each agent

chooses socialization level a. We think of the pair (a; t) as a social norm which speci�es a

suggested level of socialization and a suggested risk-sharing arrangement for society; and

from now on we focus on the case in which t is the equal-weighted constrained-e¢ cient

arrangement given capacities c(i; jja).

We are interested in social norms that are stable with respect to individual deviations

in socialization. To de�ne stability, we �rst need to specify what happens when an agent

chooses eai 6= a. Equation (4) immediately implies that no agent would want to set eai > a.
When i sets eai < a, we assume that in the resulting new network, required transfers are

25An automorphism b is a bijection b : W ! W such that (u; v) 2 L if and only if (b(u); b(v)) 2 L. For
example, the circle or torus satisfy this criterion.
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Figure 7: Maximal supported total capacity c per agent for line and plane - binary shocks
(left panel) and uniform shocks (right panel)
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speci�ed by the truncated risk-sharing arrangement eti de�ned as
eti;eij =

8<: min
�
teij; c (i; jjeai; a�i)� if teij > 0

�min
�
�teij; c (i; jjeai; a�i)� otherwise.

In words, in the new network in which the links of i have lower capacity, the previously

speci�ed transfers between i and a connection j take place fully if they meet the new capac-

ity constraint, but take place only partially� up to the new constraint� otherwise. Thus,

truncation captures the notion that the new social structure can only support transfers te

up to the point at which they are also incentive-compatible in the modi�ed network. Given

a distribution of endowment shocks, we call the social arrangement (a; t) stable if no agent

can increase her expected utility by changing her socialization e¤ort.

Analyis. It is easy to verify that each agent�s expected utility is increasing and strictly

concave in her e¤ort level eai, provided that eai < a,26 and hence the following necessary and
su¢ cient �rst-order condition characterizes symmetric stable arrangements:

@�EUi (exi)
@eai

����
~ai=ai

� � for all agents i:

The left-side derivative @�EUi (exi) =@eai represents the marginal utility loss to agent i if she
slightly reduces her socialization e¤ort. Stability requires that this utility loss is not smaller

than the utility gain from having to spend less on the socialization e¤ort.

26Contact the authors for a formal proof.
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Figure 8: Maximal supported SDISP for line and plane - binary shocks (left panel) and
uniform shocks (right panel)
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We now turn to use this model to explore how our conclusions about the line and the

plane are a¤ected with endogenous link strength. Speci�cally, we are interested in the highest

stable socialization e¤ort that can be supported in each network as we vary �. To begin, we

numerically solve for the equilibrium for both binary and uniform shock distributions and

plot, in Figure 7, the maximum stable per-capita link capacity c for a range of values of the

marginal cost of socialization �. The lesson from the Figure is that for large and intermediate

� the plane provides more incentives to socialize than the line, while this ordering is reversed

for small �. Thus, in the range of � where insurance is not yet close to perfect, our basic

conclusion that risk-sharing is better on the plane is ampli�ed. As the plane reaches close

to full insurance sooner than the line the relationship is eventually reversed as the marginal

bene�t of insurance decreases more quickly on the plane. However, risk sharing is always

better on the plane compared to the line for all values of � as �gure 8 demonstrates.

A partial intuition for how the incentives to invest vary with � comes from noting that an

agent is a¤ected by a marginal reduction in his investment only when he is on the perimeter of

a risk-sharing island� because otherwise the truncation does not bind. In turn, the frequency

with which he ends up on such a perimeter is related to the average perimeter-area ratio

of sharing islands. In particular, when� as in the plane for � relatively high� that ratio is

large, agents are more frequently on the perimeter, and hence the incentives to invest are

strong, generating relatively higher incentives to socialize.

This intuition is only partial, because the direction of �ows on the boundary of a sharing

island also matters, and, in general, the same island can have both in�ows and out�ows
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along its boundary. To clarify this point, let P (k; rin; rout) denote the probability that the

agent is in a sharing island of size k such that its perimeter has rin links receiving transfers

and rout links sending transfers.27 Denote by U
0
(xjk; rin; rout) the mean marginal utility of

consumption of agents across all (k; rin; rout) islands and across all realizations under risk-

sharing arrangement x. Then we can write

@�EUi (exi)
@eai

����
~ai=ai

=
X

k;rin;rout

P
�
k; rin; rout

�
U
0
(xjk; rin; rout)r

in � rout
kd

: (5)

The logic behind this formula is the following. Reducing socialization a¤ects i�utility only

in those realizations in which he is on the boundary of a risk-sharing island. Because the

network is symmetric, for i.i.d. shocks an agent is equally likely to take any of the k positions

inside the risk-sharing island. Therefore, conditional on i being in this island, and denoting

his per-link capacity by c, the expected amount of resources which �ow to him from the

outside equals rinc=k, and the expected �ow to the outside originating from him equals

routc=k. Given that for eai < a the per-link capacity is c = eai=d, the derivative of these
quantities with respect to eai gives the last term in the expression. These consumption

e¤ects are weighted by probabilities and by the marginal utility of consumption of agents,

U
0
(xjk; rin; rout).

Equation (5) links the incentives to socialize with the variable rin�rout
kd

which we call

the normalized net �ow. This random variable, although closely related, di¤ers from the

perimeter-area ratio (which equals a [F ] = c r
in+rout

kd
) in that it also takes into account the

direction of �ows on the boundary of the island. In particular, the net �ow can be either

positive or negative. What matters for the incentives to socialize, according to (5), is the

dispersion in the net �ow: because positive normalized net �ows tend to be associated with

low consumption levels inside the sharing island and therefore large weights U
0
(xjk; rin; rout)

while the converse is true for negative net �ows, higher net �ow dispersion results in stronger

incentives to invest in links.

The variability in the net �ow is closely related to the average perimeter-area ratio. This

is easiest to see in an environment with symmetric binary shocks and small capacities, in

27In particular, the total perimeter of the island is (c=d)
�
rin + rout

�
.

36



Figure 9: Variance of distribution of net-�ow-area ratio rin�rout
kd

for line and plane - binary
shocks (left panel) and uniform shocks (right panel)
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which each sharing island either has all links pointing in, or all links pointing out. In that

environment, in equation (5) with probability one either rin = 0 or rout = 0, which implies

that the expression simpli�es to a weighted sum of the perimeter-area ratios of sharing

islands. But even more generally, we show through simulations that geometries with high

perimeter-area ratios (such as the plane or the binary tree) also have highly dispersed net-

�ow-area distributions (and hence high marginal utility from socialization). Figure 9 shows

the variance of the net-�ow-area ratio distribution for the line and plane while controlling

for the variance of consumption x (i.e. controlling for the degree of risk-sharing achieved

by the network).28 For both binary and uniform shocks the net-�ow-area ratio distribution

always has a higher variance on the plane compared to the line. This translates into a larger

marginal incentive to invest in socialization on the plane (for the same degree of risk-sharing):

the very feature that creates good risk-sharing on the plane also makes these risk-sharing

arrangements stable.

5 Conclusion

This paper showed that the expansiveness of a social network determines the e¤ectiveness

of informal risk-sharing. Our results provide an explanation for why many real-life social

networks are likely to be su¢ ciently expansive to allow for good risk-sharing. We also

28Note, that this distribution has mean 0 and is symmetric around the mean for binary and uniform
shocks.
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characterized Pareto-optimal arrangements and found that resources are shared among local

groups.

In future work we plan to develop a dynamic version of our model, in which the value

of a social link is partly derived from the present value of future insurance bene�ts in the

network. In such a model the values of social links, the network structure, and the risk-

sharing agreement would all be endogenized.

We also plan to extend our empirical analysis. Our model is su¢ ciently tractable that it

can be used to estimate the strength of di¤erent types of links from social network and con-

sumption data. Such estimates could be used for policy experiments, such as (i) measuring

the welfare e¤ects of development aid, taking into account network spillovers; or (ii) com-

paring the network structure of communities with di¤erent degrees of ethnic heterogeneity,

and exploring the implications for informal insurance.
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Proof of Theorem 1
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The theorem can be generalized to the case where links in the network are directed, so

that c (i; j) and c (j; i) may di¤er. In that environment, coalition proofness now requires that

eF � xF � cout [F ] (6)

where cout [F ] =
P

i2F;j =2F c(i; j) is the maximum amount that agents in F are willing to give

to the outside community. Here we present a proof of this more general result. Su¢ ciency

follows from the discussion in the text. To prove necessity, let gi = ei � xi the amount

that i has to transfer away, and let gF =
P

i2F ei for any subset of agents F . Note that

gW = 0 by eW = xW . Let U be the set of agents for whom gi � 0 and let D = WnU .

De�ne the auxiliary graph G0 which has two additional vertices, s and t, and additional

edges connecting s with all agents in U , and additional edges connecting t with all agents in

D. For any i 2 U , de�ne the capacity c (s; i) = gi and c (i; s) = 0. Similarly, for any j 2 D,

let c (j; t) = �gj and c (t; j) = 0.

The auxiliary graph is useful, because implementing the desired consumption allocation

with a transfer scheme that meets the capacity constraints is equivalent to �nding an s! t

�ow in G0 that has value gU =
P

gi�0 gi. To see why, note that in the desired allocation,

exactly gi must leave each agent i 2 U . The capacities on the new links ensure that in any

s ! t �ow, at most gi can leave agent i. Similarly, to implement the target, exactly �gj
must �ow to each agent j 2 D, and the capacity on the (j; t) link ensures that this is the

maximum that can �ow to j. As a result, any �ow with value
P

gi�0 gi must, by construction,

take exactly gi away from i and deliver exactly gj to j.

We have reduced our implementation problem to a �ow problem. To compute the max-

imum s ! t �ow, we instead compute the value of the minimum cut. Fix a minimum cut,

let S be the set of agents in W that are still connected to s after the cut, and let T = WnS.

Clearly, if we consider the restriction of the cut to the original network G, there will be no

surviving paths connecting some agent in S with some other agent in T .

Let U1 � U denote those agents whose link with s is cut in the minimum cut of G0, and

let D1 � D denote those in D whose link with t is cut. Let U2 = UnU1 and D2 = DnD1

be the sets of agents whose link with s respectively t remains; then U2 � S and D2 � T ,
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because otherwise there would be surviving path in G0 connecting s and t after the cut. This

also implies that gS � gU2 + gD1, because

gS = gS\U + gS\D � gU2 + (gD � gD2) = gU2 + gD1 (7)

where we used that gi � 0 when i is in U and negative when i is in D.

The value of the cut in G0 can be bounded as

cut value � gU1 � gD1 + cout [S]

where the �rst two terms count the total capacity of links with s and t that have been

deleted, and the �nal term is a lower bound for links deleted from the original network G.

By assumption (6), cout [S] � eS � xS = gS, and using (7) we obtain

cut value � gU1 � gD1 + gU2 + gD1 = gU1 + gU2 = gU :

It follows that the value of the maximum �ow is at least gU , as desired.

Appendix B: Data

Dean Karlan, Markus Mobius and Tanya Rosenblat conducted a survey in November 2006

in a rural village close to Huaraz (Peru). The heads of households and spouses (if available)

of 223 households were interviewed. The survey consisted of two components: a household

survey and a social network survey. The household survey recorded a list of all members of

the household and basic demographic characteristics including gender, education, occupation

and income.

The social network component of the survey asked the head of household and the spouse

to list up to 10 non-relatives in the community with whom the respondent spends the most

time with in an average week. Respondents were also asked separately to list their �rst and

second-degree relatives (excluding relatives related through marriage). We use this data to

construct an undirected social network where two agents have a friendship link if one of
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them names the other as a friend and as a relative link if one of them lists the other as

relative. We also added intra-household links between all members of a household which are

assumed to be of unlimited strength. Individuals have, on average, 1.84 relative links and

1.95 non-relative links.

In the survey, individuals were also asked whether they borrow or lend money or object

across each link. This data was aggregated on the household level and used to construct

�gure 1.
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